Finite element analysis of neuronal electric fields: the effect of heterogeneous resistivity

نویسندگان

  • Pavol Bauer
  • Sanja Mikulovic
  • Stefan Engblom
  • Katarina E. Leao
  • Frank Rattay
  • Richardson N. Leao
چکیده

Simulation of extracellular fields is one of the substantial methods used in the area of computational neuroscience. Its most common usage is validation of experimental methods as EEG and extracellular spike recordings or modeling of physiological phenomena which can not be easily determined empirically. Continuous experimental work has been re-raising the importance of polarization effects between neuronal structures to neuronal communication. As this effects rely on very small potential changes, better modeling methods are necessary to quantify the weak electrical fields in the microscopic scale in a more realistic way. An important factor of influence on local field effects in the hippocampal formation is the heterogeneous resistivity of extracellular tissue. The vast majority of modeling studies consider the extracellular space to be homogeneous while experimentally, it has been shown that the stratum pyramidale has two times higher resistivity than other hippocampal layers. Common simulation methods for extracellular electrical fields based on the point source approximation are bound to describe the resistance of the space with a single scalar. We propose that models should be based on the spaceand time-dependent Maxwell equations (Partial Differential Equations, PDEs) in order to account for heterogeneous properties of the extracellular space and specific arrangements of neurons in dense hippocampal layers. To demonstrate the influence of heterogeneous extracellular resistivity and neuronal spatial orientation on modeling results, we combine solutions of classical compartment models with spatiotemporal PDEs solved by the Finite Element Method (FEM). With the help of these methods, we show that the inclusion of heterogeneous resistivity has a substantial impact on voltages in close proximity to emitting hippocampal neurons, substantially increasing the change in extracellular potentials compared to the homogeneous variant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation and Experimental Study of Vibration and Noise of Pure Electric Bus Transmission based on Finite Element and Boundary Element Methods

Since the electric motor of pure electric vehicle replaced the engine, the "masking effect" disappears, and the problem of vibration and noise of the transmission becomes prominent. This is generated during the gear meshing and is transmitted to the housing through the shaft and bearing. Thereby, radiation noise of the housing are generated. The prediction and analysis...

متن کامل

Finite Element Analysis of Functionally Graded‎ ‎Piezoelectric Beams

In this paper‎, ‎the static bending‎, ‎free vibration‎, ‎and dynamic response of functionally graded‎ ‎piezoelectric beams have been carried out by finite element method‎‎under different sets of mechanical‎, ‎thermal‎, ‎and electrical‎ ‎loadings‎. ‎The beam with functionally graded piezoelectric material‎ ‎(FGPM) is assumed to be graded across the thickness with a simple‎ ‎power law distributio...

متن کامل

Finite Element Analysis of Tissue Conductivity during High-frequency and Low-voltage Irreversible Electroporation

Introduction: Irreversible electroporation (IRE) is a process in which the membrane of the cancer cells are irreversibly damaged with the use of high-intensity electric pulses, which in turn leads to cell death. The IRE is a non-thermal way to ablate the cancer cells. This process relies on the distribution of the electric field, which affects the pulse amplitude, width, and electrical conducti...

متن کامل

Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory

Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...

متن کامل

A Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers

In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012